Select topic(s) from the dropdown(s) below or use the search box to refine your results.
In June 2020, the Nuclear Regulatory Commission (NRC) finalized Regulatory Guide (RG) 1.2361 for plants evaluating the rod ejection accident (or reactivity-initiated accident [RIA]). The regulatory change is an enhancement of the precursor (RG 1.772 ) requiring a more detailed transient analysis that cannot be completed in the old onedimensional (1D) kinetics analysis methodology.
Background Westinghouse developed Advanced Doped Pellet Technology (ADOPT™) fuel to improve fuel cycle economics and enhance the accident tolerance of conventional uranium dioxide (UO2) fuel pellets. ADOPT fuel is an advanced doped pellet, developed in conjunction with Westinghouse’s EnCore® fuel program.
The boiling water reactor (BWR) control rod of today must meet high operational demands while at the same time contribute to decreased operational costs for the plant operator.
The boiling water reactor (BWR) control rod (CR) of today must meet high operational demands while at the same time contribute to decreased operational costs for the plant operator.
In response to industry motivation to reduce the cost and effort associated with reload low power physics testing (LPPT) – particularly elimination of rod worth measurements – Westinghouse has developed a methodology to optimize post-refueling startup physics testing.
Westinghouse’s AXIOM® alloy is our next generation of fuel rod cladding material developed for demanding fuel duties and higher burnups. AXIOM cladding provides improved corrosion resistance and hydrogen pick-up performance, while maintaining excellent dimensional stability and superior resistance to aggressive coolant chemistry conditions.
The BEACON™ Core Monitoring System is an advanced core monitoring and support package that uses current instrumentation in conjunction with a three-dimensional (3-D), nodal analytical methodology for online measurement and analysis of 3-D power distributions. The system performs core monitoring, measurement data reduction, analysis, and follow and prediction.
The BEACON™ Core Monitoring System is an advanced core monitoring and support package that uses current instrumentation in conjunction with a three-dimensional (3-D), nodal analytical methodology for online measurement and analysis of 3-D power distributions. The system performs core monitoring, measurement data reduction, analysis, core follow and prediction.
BEACON™ 堆芯监测系统是一款先进的堆芯监测及支 持性软件包,该系统使用现有测量仪器,结合三维 (3D) 节点分析方法对三维功率分布进行在线测量及 分析。此系统可完成堆芯监测、测量数据处理、分 析、跟踪及预测。
Since 2013, debris-induced fuel failures have led to declining fuel performance industrywide as addressed in INPO Event Report 19-6. Not only do these failures lead to increased fission products in the reactor coolant system (RCS),
To improve the overall optical quality of underwater inspections, Westinghouse has developed an all-digital, high-definition, underwater inspection system to allow utilities to see what they have been missing.
Excessive boiling water reactor (BWR) channel distortion has become a significant operational issue affecting BWR plants in the United States. If not properly managed, excessive channel distortion can increase the risk of safety-related disruptions.
As a full-service provider for boiling water reactor (BWR) nuclear power plants, Westinghouse can offer engineering services for BWR safety analysis, including containment analysis.
The boiling water reactor (BWR) control rod (CR) of today must meet high operational demands and at the same time contribute to decreased operational costs for the plant operator.
Westinghouse offers engineering services in various areas related to boiling water reactor (BWR) safety analysis. These include fast and slow transients, stability, loss-ofcoolant accident (LOCA), and containment analysis.
Westinghouse has a proven tool to provide solutions to many common emergent and long-term utility concerns. Westinghouse’s CE Nuclear Transient Simulator (CENTS) code is a U.S. Nuclear Regulatory Commission (NRC) licensed best-estimate analysis code that can be used in a variety of pressurized water reactor (PWR) and boiling water reactor (BWR) applications.
Westinghouse developed the CE16NGFTM next generation nuclear fuel assembly for 16x16 Combustion Engineering nuclear steam supply system (CE-NSSS) style reactors to improve fuel performance, especially at high-duty operation, enhance fuel reliability and provide additional value to users through power upratings, improved operability and favorable fuel cycle economics.
In recent years, fuel assembly channel bow has become a serious concern to the boiling water reactor (BWR) industry.
Westinghouse Criticality Safety Services assess the margins to criticality, promoting safe and cost-effective storage, handling and transportation of pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear fuel products. Criticality Safety Services provide explicit and complete analyses of fresh and spent nuclear fuel configurations, including extensive documentation and licensing support. All analyses are performed under the Westinghouse Quality Management System (QMS), providing verification and validation of all analysis and documentation activities.
Westinghouse’s next-generation Customer Collaboration Center (C3) takes the work and worry out of managing engineering servers for your Westinghouse-licensed technologies. Users are free to create a specialized computing environment on systems that conform to strict Westinghouse standards, thereby producing dependable, reliable and consistent results.
On Dec. 2, 1957, Westinghouse changed the world when Shippingport, the first commercial nuclear power station in the U.S., came online. Today, Westinghouse is changing nuclear energy again, building on our legacy of innovation with our revolutionary new accident-tolerant fuel (ATF) design, EnCore® fuel.
The enhanced performance rod cluster control assembly (EP-RCCA™) was developed to provide enhanced performance relative to previous control rod designs through the selection of materials and surface treatment that enhance the product’s resistance to wear and irradiation. The materials were selected with the intent to perform well with regard to corrosion and dimensional stability over the EP-RCCA design lifetime.
FUELDUTYDRV (FDD) is a best-estimate fuel component analysis tool that can process physics data, thermal-hydraulic (TH) analysis codes and mechanical data for fuel performance assessment of any and all fuel rods in the core.
As its name implies, the state-of-the-art FULL SPECTRUM™ LOCA (FSLOCA™) evaluation model can analyze the full spectrum of LOCA break sizes with improved capability and analysis results compared to prior LOCA technologies.
The GOTHIC™ computer code is a state-of-the-art program for modeling thermal hydraulic transients with multiphase, multicomponent fluid flow. These capabilities make GOTHIC an excellent tool for accurately modelling complex heatup and flow balance calculations.
Westinghouse’s Integral Fuel Burnable Absorber (IFBA) fuel pellet has revolutionized PWR nuclear reactor fuel management loading patterns and has enabled highly improved fuel cycle economics. Westinghouse is now building on the success of our flagship IFBA product with IFBA/Gad hybrid fuel assemblies that facilitate longer (24-month ) cycles while providing similarly improved fuel cycle cost (FCC) savings.
A loss-of-coolant accident (LOCA) is an inadvertent loss of inventory from the primary side of the reactor coolant system (RCS).
Pellet clad interaction (PCI) is a serious concern for operation of nuclear power plants under transient conditions such as those that occur during startup, temporary down power for maintenance activities, load follow or dropped rod recovery. Under these conditions, fuel failure can occur if the core is ramped too quickly. However, the definition of “too quickly” depends on fuel operating history; thus, if a single “rule of thumb” ramp rate is used it will be necessarily conservative and the plant will be delayed in getting maximum power on to the grid.
Network Management Service (NMS), combined with the Westinghouse Technology Upgrade and Maintenance Service and the customer’s HP maintenance agreement, provides dependable computing capabilities — a necessity for engineers performing reload designs or continually monitoring core performance.
The Westinghouse Next-Generation Rod Cluster Control Assembly (NG-RCCA™) has been developed to provide further performance enhancements and increased longevity of the control rod assembly. The NG-RCCA builds upon proven and reliable Enhanced-Performance Rod Cluster Control Assembly (EP-RCCA™) design, which has had a service history of more than 30 years and more than 3,000 assemblies delivered globally to a wide variety of plants designs.
The Westinghouse Advanced Nodal Code (ANC) is a highly accurate and efficient two-energy group, three-dimensional (3D) core simulator code. It uses the nodal expansion method for the nodal coupling coefficient, a group theory for pin power recovery, and the equivalence theory for homogenization.
Operation of a nuclear power plant requires an accurate and robust safety analysis. New regulatory requirements, advancements in fuel designs, plant upgrades supporting long-term operations and license extensions drive the need for advanced safety analysis codes and methods.
Background With more than 30 years of extensive nuclear steam supply system (NSSS) non-loss-of coolant accident (LOCA) safety analysis experience, Westinghouse is at the forefront of developing and maintaining state-oftheart methods. Westinghouse now offers a non-LOCA safety analysis methodology and technical transfer package that incorporates the RETRAN-02 computer code with Westinghouse software (FACTRAN, TWINKLE, OPTOAX), along with a set of analysis methods approved by the U.S. Nuclear Regulatory Commission (NRC)
Westinghouse core designers spend considerable time and effort developing high-performing loading patterns (LPs). However, redesigns are sometimes necessary, and even well-designed loading patterns can be adversely affected by fuel issues. When this occurs, months worth of design effort must be compressed into weeks or even days. Utilities can incur substantial costs waiting for a new loading pattern to be developed, analyzed and verified before continuing with the reload.
Over the past 40 years, Westinghouse educational specialists and subject matter experts have provided training in fuel, services, technology, plant design and equipment to utility and industrial customers in the worldwide commercial nuclear electric power industry. Our passion for the nuclear industry, its plants and its people allow Westinghouse to leverage learning for global success by developing relationships that allow a better understanding of utility cultures which, in turn, results in nuclear safety and performance improvement.
In today’s competitive environment, utility employees must maintain high safety standards while achieving economic efficiency. It is imperative that utilities reduce plant operating and maintenance costs, minimize fuel costs and achieve the greatest return on advanced technology investments, while maintaining safety. To achieve this difficult balance, utility engineers must have a thorough understanding of nuclear fuel design methods and plant operating requirements. Westinghouse Nuclear Fuel Training Services can help utility personnel meet these needs by offering catalog courses and developing special customized courses.
Optimized ZIRLO™ High-performance Fuel Cladding Material represents an evolutionary development of Westinghouse’s ZIRLO® High-performance Fuel Cladding Material.
Industry studies indicate that the reactor pressure vessel may be a limiting component with respect to attaining the desired life and life extension (i.e., long-term operation/subsequent [second] license renewal [LTO/SLR]) for many nuclear power plants. The primary reactor vessel life attainment issue is concerned with the prevention of nonductile failure of the reactor vessel welds, which are subject to neutron radiation-induced embrittlement effects. For those vessels where this concern exists during their anticipated operational life, the implementation of neutron flux reduction programs can play a significant role in attaining desired reactor lifetimes. Because fluence impacts to these welds build up over time, effective fluence reduction requires implementing a program as early as possible to minimize the amount of incremental fluence reduction needed in each future cycle after program implementation (see graph).
Boiling water reactor (BWR) safety analyses capabilities can form the basis for customer success in multiple areas.
Westinghouse’s PRIME™ advanced fuel features help to improve fuel performance, enhance fuel reliability, enable better fuel cycle economics and provide additional margin at uprated conditions and higher burnup. The package of features includes an optimization of enhancements based on proven Westinghouse fuel reliability and world-class leadership in the design and manufacture of nuclear fuel. PRIME fuel features are available for the 17x17 Robust Fuel Assembly 2 (RFA-2), 17x17 Optimized Fuel Assembly (OFA) and 15x15 Upgrade Westinghouse fuel designs.
The Reactor Excursion and Leak Analysis Program (RELAP) is a U.S. Nuclear Regulatory Commission-developed tool for analyzing loss of coolant accidents (LOCAs) and system transients in pressurized water reactors (PWRs) or boiling water reactors (BWRs). It is a suite of codes for analyzing thermal hydraulic events using state-of-the-art two-phase flow models, which has broad capabilities in both nuclear and non-nuclear systems. RELAP5 is widely used worldwide in transient analyses for light water reactors (LWRs).
Westinghouse has more than 40 years of experience in design and manufacture of nuclear fuel assemblies that help utilities achieve exceptional fuel reliability and performance in today’s operating and commercial environment. The 17x17 robust fuel assembly (RFA-2) has demonstrated excellent fuel performance worldwide.
西屋电气公司在核燃料组件的设计及制造方面拥有40 多年丰富经验,在当今的电厂运行和商务环境中,这 些丰富经验及燃料设计可以帮助核电厂实现卓越的燃料可靠 性及性能。坚固的 17x17 燃料组件 (RFA-2) 已经 在世界范围内展示出非凡的燃料性能。
The Westinghouse Double Encapsulated Secondary Source Assemblies (SSAs) were developed to provide an adequate source of neutrons for reload core fuel movement reactivity monitoring and subsequent cycle startups while further protecting the source material from erosion to the primary coolant system. The double encapsulated SSA design is the direct result of Westinghouse applying knowledge learned from over 4500 reactor-years of operational performance experience of the previous single encapsulated SSA design
Industry studies indicate that the reactor pressure vessel may be a limiting component with respect to attaining the desired life and life extension, i.e., Long Term Operation (LTO) / Subsequent (Second) License Renewal (SLR), for many nuclear power plants. The primary reactor vessel life attainment issue is concerned with the prevention of non-ductile failure of the reactor vessel welds, which is subject to neutron radiation-induced embrittlement effects.
Our customers’ number one challenge is to reduce the risk of fuel failures. This challenge became the main objective for the developers of the SVEA-96 Optima3 fuel assembly design, which combines debris resistance with a simplified mechanical design. This new product is a giant step towards flawless fuel performance.
Westinghouse has developed state-of-the art nuclear fuel codes and methods, and through superior training and documentation, is capable of effectively delivering them to Westinghouse licensees worldwide. Westinghouse fuel technology consists of its design codes, procedural manuals to guide the designer in applying the methodology, and training, an essential element of successful and effective technology licensing. Throughout the year, the Westinghouse Technology Upgrade and Maintenance Service provides plant operators and fuel vendors with the latest versions of codes and improvements in methodology.
The TracWorks® fuel data management system is a source of comprehensive, and integrated fuel and component-related information for a nuclear plant’s operators, engineers and administrators. The TracWorks system provides life-cycle tracking, data management and reporting for all fuel assemblies or bundles and components for both pressurized water reactor (PWR) and boiling water reactor (BWR) units.
TRACWORKS® 燃料数据管理系统为核电站操作人员、工程师及管理人员提供有关燃料及组件的全面、最新和综合性信息。TRACWORKS 系统可以提供压水堆 (PWR) 及沸水堆 (BWR) 设备所有燃料组件或棒束以及堆芯组件的生命周期跟踪、数据管理和报表。
Today’s Boiling Water Reactor (BWR) Control Rod Blades (CRBs) must meet the highest-ever operational demands while contributing to reduced operational costs for the plant operator.
Westinghouse core design and safety analysis capabilities for VVER reactors lead to customer success in multiple areas. Examples include fuel and core designs, supporting power uprate projects, plant optimization projects, design reconstitution, modernization projects, safety upgrades, cycle-specific analyses, fuel licensing calculations and operational support.
The Robust Westinghouse Fuel Assembly (RWFA) design has rapidly become the Westinghouse standard fuel product for the VVER-1000 units in Ukraine. The RWFA design is an evolution of Westinghouse's previous VVER-1000 fuel design, WFA, which was first introduced as Lead Test Assemblies in South Ukraine Unit 3 in 2005.
Westinghouse has performed loss of coolant accident mass and energy release calculations (LOCA M&E calculations) for nearly 40 years. Westinghouse has significantly improved its capabilities with the development of the WCOBRA/TRAC LOCA M&E methodology.
Nuclear plants throughout the world are looking to implement Flexible Power Operation (FPO) as a way to remain competitive in global energy markets, especially as we continue to see a significant increase in renewable energy. These new load cycles are different from the historic demand cycles assumed in the original plant design. The transition to FPO could result in effects to the plant and its fuel, Nuclear Steam Supply System (NSSS) and Balance of Plant (BOP).
Westinghouse has developed advanced fuel assembly features and supporting PWR core component products to improve fuel performance, enhance fuel cycle economics and support extended (24-month) cycle length operation. One such PWR core component is a Wet Annular Burnable Absorber (WABA) assembly, a discrete burnable absorber component used in some WNSSS reactor core fuel cycle loading strategies.